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Abstract
This letter examines the consequences of a recently proposed modification
of the postulate of equal a priori probability in quantum statistical mechanics.
This modification, called the quantum microcanonical postulate (QMP), asserts
that for a system in microcanonical equilibrium all pure quantum states having
the same energy expectation value are realized with equal probability. A simple
model of a quantum system that obeys the QMP and that has a nondegenerate
spectrum with equally spaced energy eigenvalues is studied. This model admits
a closed-form expression for the density of states in terms of the energy
eigenvalues. It is shown that in the limit as the number of energy levels
approaches infinity, the expression for the density of states converges to a
δ function centred at the intermediate value (Emax + Emin)/2 of the energy.
Determining this limit requires an elaborate asymptotic study of an infinite
sum whose terms alternate in sign.

PACS numbers: 05.30.−d, 05.30.Ch, 02.30.Lt, 02.30.Mv

1. Introduction

This letter investigates a generalization of the usual definition of a quantum system in
microcanonical equilibrium. If the Hamiltonian H that describes a system has a nondegenerate
spectrum, then according to the standard definition of quantum microcanonical equilibrium
the system must be in one of the eigenstates of H. This requirement is known as the
postulate of equal a priori probabilities [1]. We emphasize that according to the definition of
microcanonical equilibrium in [1], the state of such a system cannot be a linear combination
of eigenstates of H. However, if H has a degenerate spectrum, then the density matrix that
describes a system of energy E in microcanonical equilibrium contains all states |E, k〉 of the
degenerate energy E with equal weight: 1

n

∑n
k=1 |E, k〉〈E, k|, where n is the number of states

having energy E.
Because the standard definition of quantum microcanonical equilibrium only allows the

system to have energies that are eigenvalues of H, an alternative, less restrictive definition
has recently been introduced [2]. By this latter definition, called the quantum microcanonical
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postulate (QMP), a state of a system in microcanonical equilibrium can have an energy that
is not an eigenvalue of H. The discussion in [2] of quantum systems obeying the QMP
is qualitative. Here, we give a quantitative analysis of a quantum system described by a
Hamiltonian having a nondegenerate, equally spaced spectrum. Assuming that the system
is in microcanonical equilibrium and that it obeys the QMP, we study the behaviour of the
density of states µ(E) as the number of energy levels becomes large.

This letter is organized as follows: in section 2 we review the representation for the density
of states µ(E) in terms of the energy eigenvalues as outlined in [2]. We then define the model
investigated in this letter in which the energy spectrum is taken to be nondegenerate and to
grow linearly: Ek ∝ k. In the next two sections we investigate the behaviour of µ(E) as the
number of states of H becomes infinite. In section 3 we show that µ(E) integrates to unity.
Section 4 presents an asymptotic study of µ(E) as the number of states becomes infinite.
On the basis of the analysis given in sections 3 and 4, we conclude that µ(E) approaches
δ[E − (Emax + Emin)/2].

2. Definition of the model

Let us review briefly the general mathematical framework proposed in [2] for describing
the density matrix of a mixed state of a quantum system in microcanonical equilibrium.
Consider a quantum system defined on an (n + 1)-dimensional Hilbert space H. Let
Zα (α = 0, 1, 2, . . . , n) be a typical element of H and let Hα

β denote the Hamiltonian with
eigenvalues Ei (i = 0, 1, 2, . . . , n). Then, the expectation value of the Hamiltonian in the
state Zα is 〈H 〉 = Z̄αHα

β Zβ/Z̄γ Zγ . Assume that in microcanonical equilibrium all states Zα

satisfying the condition 〈H 〉 = E are realized with equal probability. Then, the corresponding
unnormalized density of states �(E) is

�(E) = 1

π

∫
H

dn+1Z̄ dn+1Zδ(Z̄αZα − 1)δ

(
Z̄αHα

β Zβ

Z̄γ Zγ
− E

)
. (1)

The constraint δ(Z̄αZα − 1) in (1) arises because one is only interested in the unit
normalized states, and the factor of π reflects the additional redundant overall phase of the
state. It is convenient to use the standard integral representation δ(x) = 1

2π

∫ ∞
−∞ dλ e−iλx for

each of the δ functions appearing in (1). The Hilbert-space integration then becomes Gaussian
in the Z variables leaving the expression

�(E) = 1

π
(−iπ)n+1

∫ ∞

−∞

dν

2π

∫ ∞

−∞

dλ

2π
ei(λ+νE)

n∏
l=0

1

λ + νEl

. (2)

Assuming that the energy spectrum is nondegenerate, one can perform the λ integration
to obtain

�(E) = πn

n∑
k=0

∫ ∞

−∞

dν

2π

e−iν(Ek−E)

(iν)n

n∏
l=0,�=k

1

El − Ek

. (3)

The remaining ν integration can now be performed explicitly to give

�(E) = (−π)n
n∑

k=0

δ(−n)(Ek − E)

n∏
l=0,�=k

1

El − Ek

, (4)

where δ(−n)(x) denotes the nth integral of the δ function:

δ(−n)(x) =



0 (x < 0),

1

(n − 1)!
xn−1 (x � 0).

(5)
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Figure 1. The density of states µn(E) associated with a quantum system having a linear energy
spectrum Ek = k, where the range of the energy is suitably rescaled so that E lies in the range
[0, 1] for all n. Plots of µn(E) are given for 4-, 7- and 10-state (n = 3, 6 and 9) systems. Observe
that as the number of energy levels increases, the distribution becomes more peaked at the centre
E = 1/2, suggesting that as the number of energy levels approaches infinity, the distribution
approaches δ(E − 1/2). The analysis in sections 3 and 4 verifies that this is indeed the case.

The density of states �(E) as defined in (1) is normalized by dividing it by the volume of
the subspace of H spanned by states having unit length: Z̄αZα = 1. This gives the normalized
microcanonical state density function µ(E). The volume is given by πn/n! (see, for example,
[3]). Thus, µ(E) = n!π−n�(E) gives the density of states that satisfies the normalization
condition

∫ ∞
−∞ dE µ(E) = 1.

In this letter we propose a particular QMP model in which the energy spectrum rises
linearly and is given by Ek = k. Our objective is to study the behaviour of µ(E) as the
number of energy levels becomes infinite. With this linear choice of spectrum the normalized
density of states becomes

µ(E) = (−1)nn

n∑
k>[E]

(−1)k(k − E)n−1

k!(n − k)!
, (6)

where the notation [E] indicates the largest integer less than or equal to E.
It is now convenient to rescale the energy spectrum so that the range of the energy lies in

the interval [0, 1] for each n. Upon rescaling, (6) transforms to

µ(E) = (−1)n+1n2
[nE]∑
k=0

(−1)k(k − nE)n−1

k!(n − k)!
, (7)

where E ∈ [0, 1] for all n. To derive this result, we have used the fact that the sum in (6)
vanishes when the summation range is taken from k = 0 to k = n.

In figure 1 we plot the density of states µ(E) in (7) for n = 3, 6 and 9. This graph suggests
that µ(E) converges to a δ function centred at E = 1/2 as n, the number of energy levels,
increases. We show analytically that the density of states µ(E) associated with a quantum
system having the spectrum Ek ∝ k does indeed approach δ(E − 1/2) in the limit n → ∞.
Our analysis is of interest because it involves an asymptotic study of an infinite sum whose
terms alternate in sign. To overcome the difficulties associated with this alternating series,
we convert the series to a double contour integration whose asymptotic behaviour is obtained
using the method of steepest descent. This work also provides a new limit identity for the
Dirac δ function.
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3. Analysis of the model

To verify that µ(E) approaches δ(E − 1/2) as the number of states n approaches infinity, we
must establish two properties of µ(E). First, we must show that

∫ ∞
−∞ dE µ(E) = 1. Second,

we must show that the limiting value of µ(E) is zero except at E = 1/2, where it tends to
infinity. In this section we show that the normalization condition satisfied by µ(E) in (7) is
valid. Let us define I by I = ∫ 1

0 dE µ(E). The summation in (7) must be evaluated piecewise
because of the dependence of the summation range on E. Thus, it is convenient to decompose
the integration range of I into n intervals and to write

I = (−1)n+1n2
n∑

j=1

∫ j/n

(j−1)/n

dE

[nE]∑
k=0

(−1)k(k − nE)n−1

k!(n − k)!
. (8)

To perform the integration over E, we rewrite the summation in the integrand so that it
is independent of E. Given that j ranges from 1 to n and that k ranges from 0 to n − 1 with
k � j − 1, we have

I = (−1)n+1n2
n∑

j=1

j−1∑
k=0

∫ j/n

(j−1)/n

dE
(−1)k(k − nE)n−1

k!(n − k)!

= (−1)n+1n2
n∑

j=1

j−1∑
k=0

(−1)k

k!(n − k)!

(k − nE)n

n(−n)

∣∣∣∣
j/n

E=(j−1)/n

. (9)

We now interchange the order of summation according to
∑n

j=1

∑j−1
k=0 = ∑n

k=0

∑n
j=k+1:

I =
n−1∑
k=0

(−1)k

k!(n − k)!

n∑
j=k+1

[(j − k)n − (j − k − 1)n]. (10)

Performing the sum over j , we obtain

I =
n∑

k=0

(−1)k

k!(n − k)!
(n − k)n = (−1)n

n!

n∑
k=0

(−1)k
(n

k

)
(k − n)n. (11)

Observe that the summation in (11) is the nth discrete difference of kn. Recall that
for the polynomial f (k) = kn + lower powers, the first discrete difference is Df (k) =
f (k) − f (k − 1) = nkn−1 + lower powers. The second discrete difference is D2f (k) =
f (k) − 2f (k − 1) + f (k − 2) = n(n − 1)kn−2 + lower powers and so on. The nth discrete
difference is especially simple because there are no remaining lower powers: Dnf (k) = n!.
This observation allows us to evaluate the sum in (11):

n∑
k=0

(n

k

)
(−1)kkn = (−1)nn!. (12)

We have thus verified the normalization condition I = 1.

4. Asymptotic behaviour of (7) for large n

We now examine the behaviour of µ(E) in the limit as n → ∞. We have already shown in
section 3 that the integral of µ(E) is unity. To show that µ(E) approaches a delta function as
n → ∞ we must establish that µ(E) becomes singular at the central value E = 1

2 (Emax +Emin)

and that it vanishes at all other points in this limit. Note that by the scaling used in (7) the
central value is at E = 1/2.
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The representation of µ(E) in (7) for finite values of n is symmetric about the point
E = 1/2. To verify this symmetry, we make the transformation E → 1 − E and replace
the summation variable k by n − k. Thus, we need only to study the behaviour of µ(E) for
E = 1/α, where α � 2. Without loss of generality, we set n = αJ , where J is a large integer,
and let ωJ (α) be the value of µ(E) at E = 1/α:

ωJ (α) = α2J 2
J∑

k=0

(−1)k(J − k)αJ−1

k!(αJ − k)!
. (13)

It is straightforward to find the behaviour of ωJ (α) for large J when α > e. Using
Stirling’s formula for the asymptotic behaviour of the factorial function, we observe that each
term in the sum in (13) is exponentially small; that is, it has the form e−AJ (J → ∞), where
A is a positive constant. The number of terms in the sum grows linearly with J . Thus, the
sum vanishes as J → ∞.

However, when 2 � α � e, the terms in the sum (13) are exponentially large. In this
case, the factor of (−1)k in the summand gives rise to a deep global cancellation among all
the terms in the sum. When α > 2, this cancellation causes ωJ (α) to vanish exponentially
for large J . The case α = 2 is special because the sum does not vanish exponentially. We
have performed the sum on the right-hand side of (13) numerically for large values of J when
α = 2 using Richardson extrapolation [4]. We find that

ωJ (2) ∼ (1.954 410 0476 . . .)
√

J (J → ∞). (14)

Establishing these asymptotic results analytically is difficult. Laplace’s method for sums
cannot be used to evaluate ωJ (α) because Laplace’s method involves local analysis and this
method is inadequate when terms in the sum alternate in sign.

To overcome this difficulty, we convert the sum in (13) to a double complex contour
integral. We begin by substituting k = J − p:

ωJ (α) = α2J 2
J∑

p=1

(−1)J+ppαJ−1


(J − p + 1)
[(α − 1)J + p + 1]
. (15)

We then use the identity 1

(z)

= 1
2π i

∮
C

dt et t−z to represent the 
 functions in (15). The
contour C is infinite and encloses the negative real-t axis; C can be taken to be a circle around
the origin when α is an integer. Rescaling the integration variable t gives

ωJ (α) = (−1)J
α2J 2

(2π i)2

∮
C

∮
C ′

dr ds r−(α−1)J−1s−J−1
J∑

p=1

1

p

(
− s

r
er+s

)p

, (16)

where we have interchanged orders of integration and summation.
Integrating (16) by parts with respect to r, we obtain

ωJ (α) = (−1)J
α2J

(2π i)2

∮
C

∮
C ′

dr

r

ds

s
r−(α−1)J s−J r − 1

α − 1

J∑
p=1

(
− s

r
er+s

)p

. (17)

We also integrate (16) by parts with respect to s:

ωJ (α) = (−1)J
α2J

(2π i)2

∮
C

∮
C ′

dr

r

ds

s
r−(α−1)J s−J (s + 1)

J∑
p=1

(
− s

r
er+s

)p

. (18)

We then evaluate the finite geometric sums in (17) and (18) using the identity
∑J

p=1 ap =
(aJ+1 − a)/(a − 1), where a = −er ess/r . The representation for ωJ (α) simplifies when we
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combine the right-hand side of (17) multiplied by (α − 1)/α and the right-hand side of (18)
multiplied by 1/α, and then replace s by −s:

ωJ (α) = αJ

(2π i)2

∮
C

∮
C ′

dr ds(s − r)r−αJ−1 er eJ (r−s) − rJ s−J

s er − r es
. (19)

The term proportional to eJ (r−s) in the integrand of (19) is analytic in s along the real-s
axis for s � 0. Hence, by shrinking the contour to a small circle about the origin in the
complex-s plane, we find that the integrand does not contribute to the asymptotic behaviour
of (19) for large J . We have thus reduced the expression for ωJ (α) to

ωJ (α) = αJ

(2π i)2

∮
C

dr r−(α−1)J−1
∮

C ′
ds s−J (r − s) er

s er − r es
. (20)

Also, because the integral
∮

ds s−J vanishes for integer J > 1, we may simplify (20) further
by adding s−J to the integrand of the s integral:

ωJ (α) = αJ

(2π i)2

∮
C

dr r−(α−1)J

∮
C ′

ds s−J er − es

s er − r es
. (21)

Note that the integrand of (21) is singular if

s er − r es = 0 (22)

as long as er − es does not vanish. Clearly, (22) is satisfied when r = s, but the numerator of
the integrand in (21) also vanishes when r = s. Thus, it may appear at first that there is no
singularity at r = s, but for the special point r = s = 1 the denominator has a higher-order zero
than the numerator and thus the integrand is singular there. To find the asymptotic behaviour
of (21), we must perform a steepest-descent analysis. However, if we look for a saddle point
of the double integral, we find that it is located near the singular point r = 1 and s = 1, which
complicates the asymptotic analysis enormously. Instead, we will evaluate the s integral in
closed but implicit form and evaluate the remaining single integral in r asymptotically.

It is remarkable that the transcendental equation (22) has other solutions for which r �= s.
These solutions cannot be expressed in closed form. However, we have discovered an explicit
parametric solution to (22) for which r �= s:

r = λ e−λ/sinh λ and s = λ eλ/sinh λ, (23)

where λ is any complex number [5].
To evaluate the s integral in closed form, we must take the asymmetric solutions (23) into

account. We treat the C ′ contour as a circle about the origin in the complex-s plane, but rather
than considering the singularities inside this circle, we include instead the contributions of the
singularities outside this circle because the integrand vanishes at |s| = ∞ in all directions.
We now solve (22) for s as a function of r and denote the solution as s = S(r). We then use
residue calculus to evaluate the integral (21) at the simple pole located at s = S(r). The result
is

ωJ (α) = − αJ

2π i

∮
C

dr r−(α−1)J−1[S(r)]−J r − S(r)

1 − S(r)
, (24)

where we have simplified the integrand by using the algebraic relation in (22).
To prepare for the asymptotic evaluation of the integral in (24), we rewrite it in standard

Laplace form in terms of the parametric variable λ in (23):

ωJ (α) =
∮

dλ g(λ) e−Jf (λ), (25)

where f (λ) = log(λ eλ/sinh λ) + (α − 1) log(λ e−λ/sinh λ) and g(λ) = αJ sinh λ(1 − λ −
λ/tanh λ)/[iπ(sinh λ − λ eλ)].
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Following standard steepest-descent techniques [4], we identify the saddle point as the
solution λ0 to f ′(λ) = 0, where f ′(λ) = 2 − α + α(1/λ − 1/ tanh λ). It is easy to verify
that f (λ0) > 0 when α > 2. This implies that ωJ (α) vanishes exponentially rapidly like
ωJ (α) ∼ e−f (λ0)J as J → ∞ for α > 2. However, when α = 2, λ0 = 0 and f (λ0) = 0.
In this case, ωJ (α) behaves algebraically for large J . To find this behaviour, we calculate
f ′′(λ0) = −2/3. Also, g(λ0) = −2iJ/π . Thus, the leading steepest-descent calculation
shows that ωJ (2) diverges as J → ∞:

ωJ (2) ∼ −2iJ

π

∫
dλ e2Jλ2/3 ∼ 2

√
3√

π

√
J (J → ∞). (26)

This reproduces the result of the Richardson extrapolation in (14) and we identify 2
√

3√
π

=
1.954 410 0476 . . . .

In summary, we have shown that as the number of energy levels increases, the normalized
density of states µ(E) approaches zero when E �= 1/2 and diverges when E = 1/2. From
this result and the normalization condition satisfied by µ(E), we conclude that in this limit
µ(E) → δ(E − 1/2). Thus, according to the postulate that every quantum state associated
with a given energy E must be realized with equal probability in microcanonical equilibrium,
the density of states associated with a system having a nondegenerate linear energy spectrum
approaches a delta function in the thermodynamic limit. It follows that in this limit the energy
of the system can assume only one value. Whether an analogous result holds for an interacting
system having a degenerate spectrum is an interesting open question.
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